Distinguished models of intermediate Jacobians

Jeff Achter

j.achter@colostate.edu Colorado State University http://www.math.colostate.edu/~achter

July 2017 Abelian Varieties and Galois Actions Adam Mickiewicz University Poznán, Poland

(j.achter@colostate.edu)

July 2017 1/47

1 Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

3 Beyond torsion

- Regularity
- Descent of regular maps

Applications

- Complete intersections
- Jumping loci
- Categorification

э

The quest for the phantom

Mazur's Question

 X/\mathbb{Q} a smooth projective threefold, $h^{3,0} = h^{0,3} = 0$. Is there an abelian variety A/\mathbb{Q} :

 $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell(1)) \cong H^1(A_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)?$

Such an *A* is called a phantom.

Joint work with Sebastian Casalaina-Martin (Boulder) and Charles Vial (Bielefeld).

Weights

- Y/\mathbb{Q} smooth, projective.
 - $H^r(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ pure of weight *r*:

$$\left|\operatorname{Fr}_{p}|H^{r}(Y_{\overline{\mathbb{Q}}},\mathbb{Q}_{\ell})\right|=\sqrt{p^{r}}.$$

• $H^r(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(j))$ is pure of weight r - 2j.

イロト イポト イヨト イヨト 一日

Prelude

Plausibility

Hodge numbers

 Y/\mathbb{C} smooth, projective.

• $H^r(Y(\mathbb{C}), \mathbb{Q})$ has Hodge structure of weight *r*:

$$H^{r}(Y(\mathbb{C}),\mathbb{Q})\otimes\mathbb{C}=\oplus_{p+q=r}H^{p,q}(Y)$$
$$H^{p,q}(Y)=H^{q}(Y(\mathbb{C}),\Omega_{Y}^{p})$$
$$h^{p,q}(Y)=\dim H^{p,q}(Y)$$

• Ex: dim Y = 3

イロト イポト イヨト イヨト 一日

Newton over Hodge

 X/\mathbb{Z}_p smooth, projective, good reduction.

- NP(X, r) Newton polygon of Fr on $H^r_{dR}(X_{\mathbb{Q}_p}) \cong H^r_{cris}(X_p)$.
- HP(X, r) r^{th} Hodge polygon, vertices $(\sum_{0 \le j \le k} h^{r-j,j}, \sum_{0 \le j \le k} jh^{r-j})$.

Theorem (Mazur)

NP(X, r) lies on or above HP(X, r).

★ E > < E >

Divisibility

Corollary

If $h^{30}(X) = 0$, then each eigenvalue of Frobenius on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$ is an algebraic integer of size \sqrt{p} .

Proof.

- NP(X,3) over HP(X,3) implies all slopes of Fr_p on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ are ≥ 1 .
- \implies each eigenvalue α of Fr_p on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ divisible by p
- \implies each eigenvalue α/p of Fr_p on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$ is algebraic integer of size \sqrt{p} .

 $H^3(X_{\overline{\mathbb{O}}}, \mathbb{Q}_{\ell}(1))$ could come from an abelian variety

イロト イポト イヨト イヨト 一日

Jacobians

Jacobians as Phantoms

If X/K smooth projective, then Pic_X^0 is a phantom in degree 1.

From Kummer sequence

$$1 \longrightarrow \boldsymbol{\mu}_{N} \longrightarrow \mathcal{O}_{X}^{\times} \xrightarrow{[N]} \mathcal{O}_{X}^{\times} \longrightarrow 1$$
get
$$0 \longrightarrow H^{1}(X_{\overline{K}}, \boldsymbol{\mu}_{N}) \longrightarrow H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times}) \longrightarrow H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times})$$
so

$$H^{1}(X_{\overline{K}}, \mathbb{Z}/N(1)) \cong \ker \left(H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times}) \to H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times}) \right) \cong \operatorname{Pic}_{X}^{0}[N](\overline{K}).$$

-

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Complex Jacobians X/\mathbb{C} smooth projective Exponential sequence

 $H^1(X,\mathbb{Z}) \hookrightarrow H^1(X,\mathcal{O}_X) \longrightarrow H^1(X,\mathcal{O}_X^{\times}) \longrightarrow H^2(X,\mathbb{Z})$

 $\cong \operatorname{Pic}_X(\mathbb{C})$

 $\subseteq \operatorname{Pic}_X^0(\mathbb{C})$

and so

$$\operatorname{Pic}_{X}^{0}(\mathbb{C}) = \frac{H^{1}(X, \mathcal{O}_{X})}{H^{1}(X, \mathbb{Z})}.$$

イロト イポト イヨト イヨト 一日

Intermediate Jacobians

$$\operatorname{Pic}_{X}^{0}(\mathbb{C}) \cong \frac{H^{1}(X, \mathcal{O}_{X})}{H^{1}(X, \mathbb{Z})}$$
$$\cong \operatorname{Fil}^{1} H^{1}(X, \mathbb{C}) \setminus H^{1}(X, \mathbb{C}) / H^{1}(X, \mathbb{Z}).$$

More generally, intermediate Jacobians are

 $J^{2n+1}(X) = \operatorname{Fil}^{n+1} \backslash H^{2n+1}(X, \mathbb{C}) / H^{2n+1}(X, \mathbb{Z}).$

If $H^{2n+1}(X, \mathbb{C})$ has Hodge level one, then

- $H^{2n+1} = H^{n+1,n} \oplus H^{n,n+1};$
- Complex torus $J^{2n+1}(X)$ is actually an abelian variety.

イロト イポト イヨト イヨト 三日

Complete intersections: Deligne

Theorem (Deligne)

Suppose X/\mathbb{Q} a complete intersection of dimension 2n + 1, and $H^{2n+1}(X,\mathbb{C})$ has Hodge level one. Then $J^{2n+1}(X_{\mathbb{C}})$ descends to an abelian variety J/\mathbb{Q} , and J is a phantom for X.

Idea

- Monodromy action on universal $\mathcal{J}^{2n+1}(\mathcal{X})$ over Hilbert scheme is irreducible.
- Descent.

イロト イポト イヨト イヨト 三日

Coniveau

X/K smooth projective.

 $N^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}) \subseteq \widetilde{N}^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}) \subseteq H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell})$

- $N^r H^i$ from $Y \hookrightarrow X$ of codim r.
- $\widetilde{N}^r H^i$ is maximal $M \subset H^i$; M(r) effective.

Generalized Tate Conjecture

 $N^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}) = \widetilde{N}^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}).$

(4回) (4回) (4回)

Abel–Jacobi

X/*K* smooth projective.

- $CH^{r}(X) = \{ codim r cycles \} / \{ rat equiv \}$ Chow group.
- $A^r(X) \subset CH^r(X)$ algebraically trivial cycles .

If X/\mathbb{C} , have Abel–Jacobi map

$$\mathbf{A}^{n+1}(X) \stackrel{\mathbf{AJ}}{\longrightarrow} J^{2n+1}(X)$$

• • = • • = •

Main result

Theorem (A.–C.-M.–V.)

X/*K* a smooth projective variety over a subfield of \mathbb{C} , $n \in \mathbb{Z}_{\geq 0}$. Then there exist an abelian variety *J*/*K* and cycle $\Gamma \in CH^{\dim(J)+n}(J \times X)$ such that:

$$J_{\mathbb{C}} = J_a^{2n+1}(X_{\mathbb{C}});$$

the Abel–Jacobi map

$$\mathbf{A}^{n+1}(X_{\mathbb{C}}) \xrightarrow{\mathbf{AJ}} J(\mathbb{C})$$

is Aut(\mathbb{C}/K)*-equivariant; and*

$$H^{1}(J_{\overline{K}}, \mathbb{Q}_{\ell}) \stackrel{\Gamma_{*}}{\hookrightarrow} H^{2n+1}(X_{\overline{K}}, \mathbb{Q}_{\ell}(n))$$

is a split inclusion with image $N^n H^{2n+1}(X_{\overline{K}}, \mathbb{Q}_{\ell}(n))$.

Proof

1 Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

3 Beyond torsion

- Regularity
- Descent of regular maps

Applications

- Complete intersections
- Jumping loci
- Categorification

-

Lemma

There exist:

- *C*/*K* a smooth projective geometrically irreducible curve;
- $\gamma \in CH^{n+1}(C \times X)$ a correspondence on $C \times X$;

such that the induced map is surjective:

$$H^1(C_{\overline{K}}, \mathbb{Q}_\ell) \xrightarrow{\gamma_*} \mathbb{N}^n H^{2n+1}(X_{\overline{K}}, \mathbb{Q}_\ell(n)).$$

Capture

Strategy

•
$$\exists f: Y \hookrightarrow X/K$$
, codim n ,

$$f_*H^1(Y_{\overline{K}},\mathbb{Q}_\ell)=\mathbb{N}^n\,H^{2n+1}(X_{\overline{K}},\mathbb{Q}_\ell)(n).$$

- Bertini: $C \hookrightarrow Y$ a curve, $H^1(Y) \hookrightarrow H^1(C)$.
- γ Construct a correspondence via

$$H^1(C) \hookrightarrow H^{2d_Y-1}(Y) \xrightarrow{\sim} H^1(Y) \longrightarrow H^{2n+1}(X)$$

(Only middle arrow difficult; Lefschetz standard conjecture in degree one.)

Can take *C* geometrically irreducible using:

- $\beta : C \to \operatorname{Pic}^0_C$ inducing isomorphism on $H^1(\cdot, \mathbb{Q}_\ell)$;
- Bertini for geometrically irreducible variety Pic⁰_C.

We have

$$J^1(C_{\mathbb{C}}) \xrightarrow{\gamma_*} J^{2n+1}_a(X_{\mathbb{C}}).$$

- $J^1(C_{\mathbb{C}}) = (\operatorname{Pic}^0_C)_{\mathbb{C}}$ has a distinguished model over *K*.
- Use this and γ_* to obtain model for $J_a^{2n+1}(X_{\mathbb{C}})$.

A 3 >

Proof I

Descent

\mathbb{C}/\overline{K}

- \mathbb{C}/\overline{K} is a regular extension of fields.
- $\int_{\overline{a}_a}^{2n+1}(X_{\mathbb{C}}) := \operatorname{tr}_{\mathbb{C}/\overline{K}}(J_a^{2n+1}(X_{\mathbb{C}}))$ is "largest" sub-abelian variety defined over \overline{K} .

Rigidity:

$$\operatorname{Hom}_{\overline{K}}(J(C)_{\overline{K}}, J_{\underline{a}}^{2n+1}(X_{\mathbb{C}})) = \operatorname{Hom}_{\mathbb{C}}(J(C_{\overline{K}})_{\mathbb{C}}, J_{a}^{2n+1}(X_{\mathbb{C}})).$$

Get surjection

$$J(C_{\overline{K}}) \longrightarrow \int_{=a}^{2n+1} (X_{\mathbb{C}})$$

of abelian varieties over \overline{K} .

July 2017 19 / 47

\overline{K}/K

Need to show

$$J(C_{\overline{K}}) \xrightarrow{\gamma_*} J^{2n+1}(X_{\mathbb{C}})$$

descends to K.

• Suffices to show all

 $(\ker \gamma_*)[N](\overline{K})$

stable under Gal(*K*).

Strategy suggested to us by Gabber.

글 🖌 🖌 글

 $\star \underline{J}_{\underline{=}a}^{2n+1}(X_{\mathbb{C}})[N]$ $J(C_{\overline{K}})[N]$ —

July 2017 21 / 47

イロト イポト イヨト イヨト 一日

▲ ■ ▶ ■ つへで July 2017 21 / 47

イロト イポト イヨト イヨト

July 2017 21 / 47

Models

- Since $\ker(J^1(C)_{\overline{K}} \to \underline{J}_{\underline{a}a}^{2n+1}(X_{\mathbb{C}}))$ stable under $\operatorname{Gal}(K)$, we have a model J/K for $J_a^{2n+1}(X_{\mathbb{C}})$.
- How do we know this is the right model?

イロト イ理ト イヨト イヨト

Recall the Abel–Jacobi map

$$A^{n+1}(X_{\mathbb{C}}) \xrightarrow{AJ} J^{2n+1}_a(X_{\mathbb{C}}).$$

Lemma

The model J/K of J_a^{2n+1}(X_{\mathbb{C}}) makes AJ Gal(*K*)*-equivariant on torsion.*

イロト イポト イヨト イヨト

- 32

Recall the Abel-Jacobi map

$$A^{n+1}(X_{\mathbb{C}}) \xrightarrow{AJ} J^{2n+1}_a(X_{\mathbb{C}}).$$

Lemma

The model J/K of J_a^{2n+1}(X_{\mathbb{C}}) makes AJ Gal(K)-equivariant on torsion.

イロト イポト イヨト イヨト

Corollary

J is a phantom for *X* in degree 2n + 1.

イロト イロト イヨト イヨ

1 Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

3 Beyond torsion

- Regularity
- Descent of regular maps

Applications

- Complete intersections
- Jumping loci
- Categorification

-

• Still want to show

$$\mathbf{A}^{n+1}(X_{\mathbb{C}}) \xrightarrow{\mathbf{A}\mathbf{J}} J(\mathbb{C})$$

is Aut(\mathbb{C}/K)-equivariant.

• Rigidity fails for non-torsion points (on abelian varieties) and cycles (on arbitrary varieties).

Key Tool

AJ : $A^{n+1}(X_{\mathbb{C}}) \to J^{2n+1}_a(X)(\mathbb{C})$ is *regular* (in the sense of Samuel).

Regular maps

- $X/k = \overline{k}$, A/k an abelian variety.
- An abstract group homomorphism

$$A^{i}(X) \xrightarrow{\phi} A(k)$$

is regular if for every pointed variety (T, t_0) , and every family of cycles $Z \in CH^i(T \times X)$, the map of sets

$$T(k) \xrightarrow{w_Z} A^i(X) \xrightarrow{\phi} A(k)$$

$$t \longmapsto [Z_t] - [Z_{t_0}]$$

July 2017 27 / 47

Regular maps

- $X/k = \overline{k}$, A/k an abelian variety.
- An abstract group homomorphism

$$A^{i}(X) \xrightarrow{\phi} A(k)$$

is regular if for every pointed variety (T, t_0) , and every family of cycles $Z \in CH^i(T \times X)$, the map of sets is induced by a morphism

Ω/k

Lemma

 Ω/k an extension of algebraically closed fields of characteristic zero, X/k smooth projective, A/Ω an abelian variety,

$$A^i(X_{\Omega}) \xrightarrow{\phi} A(\Omega)$$

regular and surjective. Then $A = (\underline{\underline{A}})_{\Omega}$; $\phi = (\underline{\phi})_{\Omega}$; and

$$\mathbf{A}^{i}(X) \xrightarrow{\boldsymbol{\phi}} \underline{\underline{A}}(k)$$

is regular and surjective.

Key Idea

Use rigidity; $A^i(X_{\Omega})[N] \cong A^i(X_{\overline{K}})[N]$.

\overline{K}/K

Proposition

K perfect, X/K smooth and projective, A/K an abelian variety. Suppose

$$A^{i}(X_{\overline{K}}) \xrightarrow{\phi} A(\overline{K})$$

is regular and surjective. If $\phi[\ell^n]$ is Gal(K)-equivariant for all n, then ϕ is Gal(K)-equivariant.

Key Idea

For test varieties (T, t_0) , abelian varieties are enough.

イロト イ理ト イヨト イヨト

Weil's lemma

Algebraically trivial cycles are witnessed by abelian varieties:

Lemma

Let X/K be a scheme of finite type over a field, and let $\alpha \in A^i(X_{\overline{K}})$ be an algebraically trivial cycle class. Then there exist an abelian variety B/K, a cycle class $Z \in CH^i(B \times X)$, and $a t \in Z(\overline{K})$ such that

$$\alpha = [Z_t] - [Z_0].$$

- Weil (and Lang) prove this for $K = \overline{K}$.
- Their proof breaks down over arbitrary *K*; may not be enough Brill-Noether generic *K*-rational points.

イロト イポト イヨト イヨト

For regular maps, Gal(*K*)-equivariance on torsion implies equivariance:

• Weil's lemma: Find B/K abelian variety, $Z \in CH^i(B \times X)$,

$$B(\overline{K}) \xrightarrow{w_{Z}} A^{i}(X_{\overline{K}}) \longrightarrow A(\overline{K})$$

surjective.

• On torsion, have

$$B(\overline{K})[\ell^{\infty}] \xrightarrow{w_{Z}[\ell^{\infty}]} A^{i}(X_{\overline{K}})[\ell^{\infty}] \xrightarrow{\phi[\ell^{\infty}]} A(\overline{K})[\ell^{\infty}]$$

φ[ℓ[∞]] Gal(K)-equivariant by hypothesis.
w_Z[ℓ[∞]] is Gal(K)-equivariant since Z/K, 0 ∈ B(K).

So ψ : $B_{\overline{K}} \to A_{\overline{K}}$ descends to *K*.

Consequence

Corollary

If $K \subset \mathbb{C}$, then $A^{n+1}(X_{\mathbb{C}}) \to J(\mathbb{C})$ is $Aut(\mathbb{C}/K)$ -equivariant.

(j.achter@colostate.edu) Distinguished models of intermediate

▲ ■ ● ■ ● ○ ○ ○
 July 2017 32 / 47

イロト イポト イヨト イヨト

Transport de structure

Construction of *J* is functorial in $K \hookrightarrow \mathbb{C}$:

Lemma

If $\sigma \in Aut(\mathbb{C}/\mathbb{Q})$ *, then*

$$J_a^{2n+1}((X_{\mathbb{C}})^{\sigma}) \cong J_a^{2n+1}(X_{\mathbb{C}})^{\sigma}.$$

Idea

If $\Gamma \in CH(J \times X)$ witnesses *J* as the algebraic intermediate Jacobian of *X*, then Γ^{σ} does the same for J^{σ} and X^{σ} .

1 Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

3 Beyond torsion

- Regularity
- Descent of regular maps

Applications

- Complete intersections
- Jumping loci
- Categorification

• 3 >

-

Classification

 $X_n(a_1, \cdots, a_d) \subset \mathbb{P}^{n+d}$ a smooth complete intersection of dimension *n*, multidegree <u>*a*</u>.

Rapoport's Classification

A smooth complete intersection has Hodge level one if and only if it belongs to the following list:

 $X_n(2,2)$ intersection of two quadrics in \mathbb{P}^{n+2} ;

- $X_n(2,2,2)$ intersection of three quadrics;
 - $X_3(3)$ cubic threefold;
 - $X_3(2,3)$ a threefold, realized as the intersection of a quadric and cubic;
 - $X_5(3)$ cubic fivefold;
 - $X_3(4)$ quartic threefold.

< □ > < □ > < □ > < □ > < □ > < □

Period maps for Hodge level one

Distinguished models give new proof of:

Theorem (Deligne)

Let \mathcal{V} be a moduli space of complete intersection varieties of Hodge level one. The period map

$$\mathcal{V}(\mathbb{C}) \longrightarrow \mathcal{A}_{g(\mathcal{V})}(\mathbb{C})$$

is induced by a morphism

$$\mathcal{V}_{\mathbb{Q}} \longrightarrow \mathcal{A}_{g(\mathcal{V}),\mathbb{Q}}$$

over \mathbb{Q} .

From points to period maps

Proof.

• If $X \in \mathcal{V}(\mathbb{C})$,

 $\operatorname{CH}_0(X)_{\mathbb{Q}}, \cdots, \operatorname{CH}_{n-1}(X)_{\mathbb{Q}}$

spanned by linear sections (Otwinoska).

• Decomposition of the diagonal; $A^n(X) \to J^{2n+1}(X)$ surjective, so $J^{2n+1}(X) = J_a^{2n+1}(X)$ (Bloch-Srinivas).

• Since
$$J^{2n+1}(X^{\sigma}) = J^{2n+1}(X)^{\sigma}$$
,

 $\left\{ (X, J^{2n+1}(X)) \right\} \subset (\mathcal{V} \times \mathcal{A}_{g(\mathcal{V})})(\mathbb{C})$

is stable under $Aut(\mathbb{C}/\mathbb{Q})$, and the period map descends.

イロト イポト イヨト イヨト 三日

Jumping loci

Specialization

- R/\mathbb{C} a discrete valuation ring
- $X \rightarrow S = \operatorname{Spec} R$ a smooth projective scheme.
- $I(X_n) = I_a^{2n+1}(X_n)$, etc.

Then:

- $J(X_n)$ extends to an abelian scheme $J(X_n)/S$;
- There is a specialization map

 $J(X_n)_0 \longrightarrow J(X_0)$

イロト イポト イヨト イヨト 二日

Jumps in J

In general, $\underline{J}(X_{\eta})_0 \rightarrow J(X_0)$ is not surjective.

Example

- *E* a CM field with $[E : \mathbb{Q}] = 6$, $[\widetilde{E} : \widetilde{E^{(+)}}] = 8$.
- $X \rightarrow S$ an abelian threefold with:
 - End $(X_{\overline{\eta}}) \cong \mathbb{Z};$
 - $\operatorname{End}(X_0) \cong \mathcal{O}_E.$

Then (Tankeev)

- dim $J_a^3(X_{\overline{\eta}}) = \frac{1}{2} \dim \mathbb{N}^1 H^3(X_{\overline{\eta}}, \mathbb{Q}_\ell) = 3;$
- dim $J_a^3(X_0) = \frac{1}{2} \dim N^1 H^3(X_0, \mathbb{Q}_\ell) = 9.$

In general, $s \mapsto \dim J_a^{2n+1}(X_s)$ is upper semicontinuous.

イロト イポト イヨト イヨト 二日

Jumping locus

- S/\mathbb{Q} reduced and irreducible, with generic point η .
- $X \rightarrow S$ a smooth projective scheme.

Set-theoretically define the jumping locus

$$S^{\text{jump}} = S^{\text{jump}}(X, n) = \left\{ s \in S(\mathbb{C}) : \dim J_a^{2n+1}(X_s) > \dim J_a^{2n+1}(X_{\eta_{\mathbb{C}}}) \right\}.$$

Modeled on Hodge locus (Cattani-Deligne-Kaplan).

S^{jump} is algebraic

Proposition (provisional)

S^{jump} descends to \mathbb{Q} as a countable union of algebraic subvarieties.

イロト イポト イヨト イヨト

Jumping loci

S^{jump} is algebraic

Proposition (provisional)

 S^{jump} descends to \mathbb{Q} as a countable union of algebraic subvarieties.

Idea

- *S*^{jump} is (complex-analytically) locally a countable union of closed analytic subsets.
- Since $J(X^{\sigma}) = J(X)^{\sigma}$, S^{jump} is stable under $\text{Aut}(\mathbb{C}/\mathbb{Q})$.

イロト イポト イヨト イヨト 一日

Categorification

Derived equivalence

- *X*/*K* smooth projective variety over a field.
- D(*X*) bounded derived category of coherent sheaves on *X*.
- D(X) encodes lots of information about *X*.

Sample Theorem [Orlov]

If *X* and *Y* are smooth projective varieties over *K* with ample (anti-)canonical bundle, and if $D(X) \cong D(Y)$, then $X \cong Y$.

イロト イロト イヨト イヨト

Categorical invariants

If
$$D(X) \cong D(Y)$$
, then, e.g.,

• dim
$$X = \dim Y$$
;

•
$$\kappa(X) = \kappa(Y)$$
 (Orlov)

where H^{\bullet} is some Weil cohomology with weights (Mukai). • Aut⁰(X) × Pic⁰(X) \cong Aut⁰(Y) × Pic⁰(Y) (Rouquier).

< 3

Jacobians

Theorem

Let X *and* Y *be smooth, projective varieties over a field* K. *If* $D(X) \cong D(Y)$ *, then* $(\operatorname{Pic}_X^0)_{red}$ *and* $(\operatorname{Pic}_Y^0)_{red}$ *are isogenous over* K.

- For $K = \mathbb{C}$, Popa–Schnell.
- For K arbitrary, Honigs-A.-C.-M.-V.

伺き くきき くきき

Jacobians

Theorem

Let X and Y be smooth, projective varieties over a field K. If $D(X) \cong D(Y)$, then $(\operatorname{Pic}_X^0)_{red}$ and $(\operatorname{Pic}_Y^0)_{red}$ are isogenous over K.

- For $K = \mathbb{C}$, Popa–Schnell.
- For K arbitrary, Honigs–A.–C.-M.–V.

Corollary (Honigs)

If X and Y are derived equivalent threefolds over \mathbb{F}_q , then

 $Z_X(T) = Z_Y(T).$

< □ > < □ > < □ > < □ > < □ > < □

Total intermediate Jacobians

Theorem

Let X *and* Y *be smooth projective varieties over a field* $K \subset \mathbb{C}$ *with* $D(X) \cong D(Y)$ *. Then the total algebraic intermediate Jacobians*

$$\underline{J}_a(X) = \oplus \underline{J}_a^{2n+1}(X_{\mathbb{C}}) \text{ and } \underline{J}_a(Y) = \oplus \underline{J}_a^{2n+1}(Y_{\mathbb{C}})$$

are isogenous over K.

Threefolds

Corollary

If dim $X = \dim Y = 3$ and $D(X) \cong D(Y)$, then

 $\underline{J}_a^3(X_{\mathbb{C}}) \sim \underline{J}_a^3(Y_{\mathbb{C}}).$

Idea

Use:

- Popa–Schnell: $J^1(X) \sim J^1(Y)$;
- Auto-duality: $J^5(X) \sim J^5(Y)$;
- Poincaré reducibility: "cancel" from $J_a(X)$ and $J_a(Y)$.

イロト イポト イヨト イヨト 一日

Threefolds

Corollary

If dim $X = \dim Y = 3$ and $D(X) \cong D(Y)$, then

 $\underline{J}_a^3(X_{\mathbb{C}}) \sim \underline{J}_a^3(Y_{\mathbb{C}}).$

Variant

If *K* an arbitrary perfect field, replace $J_a^3(X)$ with a distinguished model of $Ab^2(X_{\overline{K}})$, Murre's algebraic representative for $A^2(X_{\overline{K}})$.

イロト イポト イヨト イヨト 一日

Thanks!

イロト イポト イヨト イヨト