Distinguished models of intermediate Jacobians

Jeff Achter

j.achter@colostate.edu

Colorado State University
http://www.math.colostate.edu/~achter
July 2017
Abelian Varieties and Galois Actions
Adam Mickiewicz University
Poznán, Poland
(1) Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem
(2) Proof
- Capture
- Descent
(3) Beyond torsion
- Regularity
- Descent of regular maps
(4) Applications
- Complete intersections
- Jumping loci
- Categorification

The quest for the phantom

Mazur's Question

X / \mathbb{Q} a smooth projective threefold, $h^{3,0}=h^{0,3}=0$. Is there an abelian variety A / \mathbb{Q} :

$$
H^{3}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)\right) \cong H^{1}\left(A_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right) ?
$$

Such an A is called a phantom. Joint work with Sebastian Casalaina-Martin (Boulder) and Charles Vial (Bielefeld).

Weights

Y / \mathbb{Q} smooth, projective.

- $H^{r}\left(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)$ pure of weight r :

$$
\left|\operatorname{Fr}_{p}\right| H^{r}\left(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right) \mid=\sqrt{p^{r}} .
$$

- $H^{r}\left(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(j)\right)$ is pure of weight $r-2 j$.

Hodge numbers

Y / \mathbb{C} smooth, projective.

- $H^{r}(Y(\mathbb{C}), \mathbb{Q})$ has Hodge structure of weight r :

$$
\begin{aligned}
H^{r}(Y(\mathbb{C}), \mathbb{Q}) \otimes \mathbb{C} & =\oplus_{p+q=r} H^{p, q}(Y) \\
H^{p, q}(Y) & =H^{q}\left(Y(\mathbb{C}), \Omega_{Y}^{p}\right) \\
h^{p, q}(Y) & =\operatorname{dim} H^{p, q}(Y)
\end{aligned}
$$

- Ex: $\operatorname{dim} Y=3$

					h^{00}		
	h^{30}		h^{20}		h^{11}		h^{01}
		h^{21}		h^{12}			
	h^{31}		h^{22}		h^{13}		
		h^{32}		h^{23}			
			h^{33}				

Newton over Hodge

X / \mathbb{Z}_{p} smooth, projective, good reduction.

- $\mathrm{NP}(X, r)$ Newton polygon of Fr on $H_{\mathrm{dR}}^{r}\left(X_{\mathbb{Q}_{p}}\right) \cong H_{\text {cris }}^{r}\left(X_{p}\right)$.
- $\mathrm{HP}(X, r) r^{t h}$ Hodge polygon, vertices $\left(\sum_{0 \leq j \leq k} h^{r-j, j}, \sum_{0 \leq j \leq k} j h^{r-j}\right)$.

Theorem (Mazur)

$\mathrm{NP}(X, r)$ lies on or above $\operatorname{HP}(X, r)$.

Divisibility

Corollary

If $h^{30}(X)=0$, then each eigenvalue of Frobenius on $H^{3}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)\right)$ is an algebraic integer of size \sqrt{p}.

Proof.

- $\mathrm{NP}(X, 3)$ over $\operatorname{HP}(X, 3)$ implies all slopes of Fr_{p} on $H^{3}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)$ are ≥ 1.
- \Longrightarrow each eigenvalue α of Fr_{p} on $H^{3}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)$ divisible by p
- \Longrightarrow each eigenvalue α / p of Fr_{p} on $H^{3}\left(X_{\overline{\mathbb{Q}},} \mathbb{Q}_{\ell}(1)\right)$ is algebraic integer of size \sqrt{p}.
$H^{3}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1)\right)$ could come from an abelian variety

Jacobians

Jacobians as Phantoms

If X / K smooth projective, then $\operatorname{Pic}_{X}^{0}$ is a phantom in degree 1 .
From Kummer sequence

$$
1 \longrightarrow \mu_{N} \longrightarrow \mathcal{O}_{X}^{\times} \xrightarrow{[N]} \mathcal{O}_{X}^{\times} \longrightarrow 1
$$

get

$$
0 \longrightarrow H^{1}\left(X_{\bar{K}}, \boldsymbol{\mu}_{N}\right) \longrightarrow H^{1}\left(X_{\bar{K}}, \mathcal{O}_{X}^{\times}\right) \longrightarrow H^{1}\left(X_{\bar{K}}, \mathcal{O}_{X}^{\times}\right)
$$

so

$$
H^{1}\left(X_{\bar{K}}, \mathbb{Z} / N(1)\right) \cong \operatorname{ker}\left(H^{1}\left(X_{\bar{K}}, \mathcal{O}_{X}^{\times}\right) \rightarrow H^{1}\left(X_{\bar{K}}, \mathcal{O}_{X}^{\times}\right)\right) \cong \operatorname{Pic}_{X}^{0}[N](\bar{K})
$$

Complex Jacobians

X / \mathbb{C} smooth projective
Exponential sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_{X} \xrightarrow{\exp } \mathcal{O}_{X}^{\times} \longrightarrow 0
$$

gives

$$
\begin{aligned}
& H^{1}(X, \mathbb{Z}) \hookrightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \rightarrow H^{2}(X, \mathbb{Z}) \\
& \cong \operatorname{Pic}_{X}(\mathbb{C})
\end{aligned}
$$

$$
\subseteq \operatorname{Pic}_{X}^{0}(\mathbb{C})
$$

and so

$$
\operatorname{Pic}_{X}^{0}(\mathbb{C})=\frac{H^{1}\left(X, \mathcal{O}_{X}\right)}{H^{1}(X, \mathbb{Z})} .
$$

Intermediate Jacobians

$$
\begin{aligned}
\operatorname{Pic}_{X}^{0}(\mathbb{C}) & \cong \frac{H^{1}\left(X, \mathcal{O}_{X}\right)}{H^{1}(X, \mathbb{Z})} \\
& \cong \operatorname{Fil}^{1} H^{1}(X, \mathbb{C}) \backslash H^{1}(X, \mathbb{C}) / H^{1}(X, \mathbb{Z})
\end{aligned}
$$

More generally, intermediate Jacobians are

$$
J^{2 n+1}(X)=\operatorname{Fil}^{n+1} \backslash H^{2 n+1}(X, \mathbb{C}) / H^{2 n+1}(X, \mathbb{Z})
$$

If $H^{2 n+1}(X, \mathbb{C})$ has Hodge level one, then

- $H^{2 n+1}=H^{n+1, n} \oplus H^{n, n+1}$;
- Complex torus $J^{2 n+1}(X)$ is actually an abelian variety.

Complete intersections: Deligne

Theorem (Deligne)

Suppose X / \mathbb{Q} a complete intersection of dimension $2 n+1$, and $H^{2 n+1}(X, \mathbb{C})$ has Hodge level one. Then $J^{2 n+1}\left(X_{\mathbb{C}}\right)$ descends to an abelian variety J / \mathbb{Q}, and J is a phantom for X.

Idea

- Monodromy action on universal $\mathcal{J}^{2 n+1}(\mathcal{X})$ over Hilbert scheme is irreducible.
- Descent.

Coniveau

X / K smooth projective.

$$
N^{r} H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right) \subseteq \widetilde{N}^{r} H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right) \subseteq H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)
$$

- $N^{r} H^{i}$ from $Y \hookrightarrow X$ of codim r.
- $\widetilde{N}^{r} H^{i}$ is maximal $M \subset H^{i} ; M(r)$ effective.

Generalized Tate Conjecture

$$
N^{r} H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)=\tilde{N}^{r} H^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right) .
$$

Abel-Jacobi

X / K smooth projective.

- $\mathrm{CH}^{r}(X)=\{$ codim r cycles $\} /\{$ rat equiv $\}$ Chow group .
- $\mathrm{A}^{r}(\mathrm{X}) \subset \mathrm{CH}^{r}(\mathrm{X})$ algebraically trivial cycles .

If X / \mathbb{C}, have Abel-Jacobi map

$$
\mathrm{A}^{n+1}(X) \xrightarrow{\mathrm{AJ}} J^{2 n+1}(X)
$$

- $J_{a}^{2 n+1}(X):=\operatorname{im}(\mathrm{AJ})$ is an abelian variety.
- $H^{1}\left(J_{a}^{2 n+1}\right)=\mathrm{N}^{n} H^{2 n+1}(X)(n)$.

Main result

Theorem (A.-C.-M.-V.)

X / K a smooth projective variety over a subfield of $\mathbb{C}, n \in \mathbb{Z}_{\geq 0}$. Then there exist an abelian variety J / K and cycle $\Gamma \in \mathrm{CH}^{\operatorname{dim}(J)+n}(J \times X)$ such that:

$$
J_{\mathbb{C}}=J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right) ;
$$

the Abel-Jacobi map

$$
\mathrm{A}^{n+1}\left(\mathrm{X}_{\mathbb{C}}\right) \xrightarrow{\mathrm{AJ}} J(\mathbb{C})
$$

is $\operatorname{Aut}(\mathbb{C} / K)$-equivariant; and

$$
H^{1}\left(J_{\bar{K}}, \mathbb{Q}_{\ell}\right) \stackrel{\Gamma_{*}}{\hookrightarrow} H^{2 n+1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(n)\right)
$$

is a split inclusion with image $\mathrm{N}^{n} H^{2 n+1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(n)\right)$.

(1) Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem
(2) Proof
- Capture
- Descent
(3) Beyond torsion
- Regularity
- Descent of regular maps
(4) Applications
- Complete intersections
- Jumping loci
- Categorification

Lemma

There exist:

- C/K a smooth projective geometrically irreducible curve;
- $\gamma \in \mathrm{CH}^{n+1}(C \times X)$ a correspondence on $C \times X$;
such that the induced map is surjective:

$$
H^{1}\left(C_{\bar{K}}, \mathbb{Q}_{\ell}\right) \xrightarrow{\gamma_{*}} \mathrm{~N}^{n} H^{2 n+1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(n)\right) .
$$

Strategy

- $\exists f: Y \hookrightarrow X / K, \operatorname{codim} n$,

$$
f_{*} H^{1}\left(Y_{\bar{K}}, \mathbb{Q}_{\ell}\right)=\mathrm{N}^{n} H^{2 n+1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)(n) .
$$

- Bertini: $C \hookrightarrow Y$ a curve, $H^{1}(Y) \hookrightarrow H^{1}(C)$.
- γ Construct a correspondence via

$$
H^{1}(C) \hookrightarrow H^{2 d_{Y}-1}(Y) \xrightarrow[\left(L^{d_{Y}}\right)^{-1}]{\sim} H^{1}(Y) \longrightarrow H^{2 n+1}(X)
$$

(Only middle arrow difficult; Lefschetz standard conjecture in degree one.)

Can take C geometrically irreducible using:

- $\beta: C \rightarrow \operatorname{Pic}_{C}^{0}$ inducing isomorphism on $H^{1}\left(\cdot, \mathbb{Q}_{\ell}\right)$;
- Bertini for geometrically irreducible variety $\operatorname{Pic}_{C}^{0}$.

We have

$$
J^{1}\left(C_{\mathbb{C}}\right) \xrightarrow{\gamma_{*}^{*}} J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right) .
$$

- $J^{1}\left(C_{\mathbb{C}}\right)=\left(\mathrm{Pic}_{\mathrm{C}}^{0}\right)_{\mathbb{C}}$ has a distinguished model over K.
- Use this and γ_{*} to obtain model for $J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)$.
\mathbb{C} / \bar{K}
- \mathbb{C} / \bar{K} is a regular extension of fields.
- $J_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right):=\operatorname{tr}_{\mathbb{C} / \bar{K}}\left(J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)\right)$ is "largest" sub-abelian variety defined over \bar{K}.

Rigidity:

$$
\operatorname{Hom}_{\bar{K}}\left(J(C)_{\bar{K}^{\prime}}, J_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right)\right)=\operatorname{Hom}_{\mathbb{C}}\left(J\left(C_{\bar{K}}\right)_{\mathbb{C}}, J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)\right)
$$

Get surjection

$$
J\left(C_{\bar{K}}\right) \longrightarrow \int_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right)
$$

of abelian varieties over \bar{K}.

\bar{K} / K

- Need to show
descends to K.
- Suffices to show all

$$
\left(\operatorname{ker} \gamma_{*}\right)[N](\bar{K})
$$

stable under Gal(K).
Strategy suggested to us by Gabber.

Follow the arrows

$$
J\left(C_{\bar{K}}\right)[N] \longrightarrow I_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N]
$$

Follow the arrows

$$
\begin{array}{cc}
J\left(C_{\bar{K}}\right)[N] & J_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N] \\
\sim \\
J\left(C_{\mathbb{C}}\right)[N] & \sim \\
& J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N]
\end{array}
$$

Follow the arrows

$$
\begin{gathered}
J\left(C_{\bar{K}}\right)[N] \\
\sim \mid \\
J\left(C_{\mathbb{C}}\right)[N] \\
\sim \mid \\
\sim \\
H_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N] \\
H_{\mathrm{an}}^{1}\left(C_{\mathbb{C}}, \mathbb{Z} / N(1)\right) \longrightarrow J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N] \\
H_{\mathrm{an}}^{2 n+1}\left(X_{\mathbb{C}}, \mathbb{Z} / N(n+1)\right)
\end{gathered}
$$

Follow the arrows

$$
\begin{aligned}
& J\left(C_{\bar{K}}\right)[N] \longrightarrow J_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N] \\
& \sim \downarrow \downarrow \sim \\
& J\left(C_{\mathbb{C}}\right)[N] \longrightarrow J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N] \\
& \sim \downarrow \\
& H_{\mathrm{an}}^{1}\left(C_{\mathbb{C}}, \mathbb{Z} / N(1)\right) \longrightarrow H_{\mathrm{an}}^{2 n+1}\left(X_{\mathbb{C}}, \mathbb{Z} / N(n+1)\right) \\
& \sim \downarrow \quad \downarrow \sim \\
& H_{\mathrm{et}}^{1}\left(C_{\mathbb{C}}, \mathbb{Z} / N(1)\right) \longrightarrow H_{\mathrm{et}}^{2 n+1}\left(X_{\mathbb{C}}, \mathbb{Z} / N(n+1)\right)
\end{aligned}
$$

Follow the arrows

Models

- Since $\operatorname{ker}\left(J^{1}(C)_{\bar{K}} \rightarrow J_{=a}^{2 n+1}\left(X_{\mathbb{C}}\right)\right)$ stable under $\operatorname{Gal}(K)$, we have a model J / K for $J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)$.
- How do we know this is the right model?

Recall the Abel-Jacobi map

$$
A^{n+1}\left(X_{\mathbb{C}}\right) \xrightarrow{\mathrm{AJ}} J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)
$$

Lemma

The model J / K of $J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)$ makes $\mathrm{AJ} \operatorname{Gal}(K)$-equivariant on torsion.

Recall the Abel-Jacobi map

$$
A^{n+1}\left(X_{\mathbb{C}}\right) \xrightarrow{\mathrm{AJ}} J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)
$$

Lemma

The model J / K of $J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)$ makes $\mathrm{AJ} \operatorname{Gal}(K)$-equivariant on torsion.

$$
\begin{gathered}
A^{n+1}\left(X_{\mathbb{C}}\right)[N] \longrightarrow J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)[N] \\
\text { Lecomte } \mid \sim \\
A^{n+1}\left(X_{\bar{K}}\right)[N] \longrightarrow \\
\text { Bloch } \mid \lambda^{n+1} \\
H^{2 n+1}\left(X_{\bar{K}}, \mathbb{Z} / N(n+1)\right)
\end{gathered}
$$

Corollary

J is a phantom for X in degree $2 n+1$.

(1) Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem
(2) Proof
- Capture
- Descent
(3) Beyond torsion
- Regularity
- Descent of regular maps
(4) Applications
- Complete intersections
- Jumping loci
- Categorification
- Still want to show

$$
\mathrm{A}^{n+1}\left(X_{\mathbb{C}}\right) \xrightarrow{\mathrm{AJ}} J(\mathbb{C})
$$

is $\operatorname{Aut}(\mathbb{C} / K)$-equivariant.

- Rigidity fails for non-torsion points (on abelian varieties) and cycles (on arbitrary varieties).

Key Tool

$\mathrm{AJ}: A^{n+1}\left(X_{\mathbb{C}}\right) \rightarrow J_{a}^{2 n+1}(X)(\mathbb{C})$ is regular (in the sense of Samuel).

Regular maps

- $X / k=\bar{k}, A / k$ an abelian variety.
- An abstract group homomorphism

$$
\mathrm{A}^{i}(X) \xrightarrow{\phi} A(k)
$$

is regular if for every pointed variety $\left(T, t_{0}\right)$, and every family of cycles $Z \in \mathrm{CH}^{i}(T \times X)$, the map of sets

$$
\begin{aligned}
& T(k) \xrightarrow{w_{Z}} A^{i}(X) \xrightarrow{\phi} A(k) \\
& t \longmapsto\left[Z_{t}\right]-\left[Z_{t_{0}}\right]
\end{aligned}
$$

Regular maps

- $X / k=\bar{k}, A / k$ an abelian variety.
- An abstract group homomorphism

$$
\mathrm{A}^{i}(X) \xrightarrow{\phi} A(k)
$$

is regular if for every pointed variety $\left(T, t_{0}\right)$, and every family of cycles $Z \in \mathrm{CH}^{i}(T \times X)$, the map of sets is induced by a morphism

$$
\begin{aligned}
& T(k) \xrightarrow{w_{Z}} \mathrm{~A}^{i}(X) \xrightarrow{\phi} A(k) \\
& t \longmapsto\left[Z_{t}\right]-\left[Z_{t_{0}}\right] \\
& \psi_{Z}
\end{aligned}
$$

Ω / k

Lemma

Ω / k an extension of algebraically closed fields of characteristic zero, X / k smooth projective, A / Ω an abelian variety,

$$
\mathrm{A}^{i}\left(\mathrm{X}_{\Omega}\right) \xrightarrow{\phi} A(\Omega)
$$

regular and surjective. Then $A=(\underline{\underline{A}})_{\Omega} ; \phi=(\underline{\underline{\phi}})_{\Omega} ;$ and

$$
\mathrm{A}^{i}(X) \xrightarrow{\underline{\phi}} \underline{\underline{A}}(k)
$$

is regular and surjective.

Key Idea

Use rigidity; $\mathrm{A}^{i}\left(\mathrm{X}_{\Omega}\right)[N] \cong \mathrm{A}^{i}\left(\mathrm{X}_{\bar{K}}\right)[\mathrm{N}]$.

\bar{K} / K

Proposition

K perfect, X / K smooth and projective, A / K an abelian variety. Suppose

$$
\mathrm{A}^{i}\left(X_{\bar{K}}\right) \xrightarrow{\phi} A(\bar{K})
$$

is regular and surjective.
If $\phi\left[\ell^{n}\right]$ is $\operatorname{Gal}(K)$-equivariant for all n, then ϕ is $\operatorname{Gal}(K)$-equivariant.

Key Idea

For test varieties $\left(T, t_{0}\right)$, abelian varieties are enough.

Weil's lemma

Algebraically trivial cycles are witnessed by abelian varieties:

Lemma

Let X / K be a scheme of finite type over a field, and let $\alpha \in A^{i}\left(X_{\bar{K}}\right)$ be an algebraically trivial cycle class.
Then there exist an abelian variety B / K, a cycle class $Z \in \mathrm{CH}^{i}(B \times X)$, and a $t \in Z(\bar{K})$ such that

$$
\alpha=\left[Z_{t}\right]-\left[Z_{0}\right] .
$$

- Weil (and Lang) prove this for $K=\bar{K}$.
- Their proof breaks down over arbitrary K; may not be enough Brill-Noether generic K-rational points.

For regular maps, $\operatorname{Gal}(K)$-equivariance on torsion implies equivariance:

- Weil's lemma: Find B / K abelian variety, $Z \in \mathrm{CH}^{i}(B \times X)$,

$$
B(\bar{K}) \xrightarrow{w_{Z}} \mathrm{~A}^{i}\left(X_{\bar{K}}\right) \longrightarrow A(\bar{K})
$$

surjective.

- On torsion, have

$$
B(\bar{K})\left[\ell^{\infty}\right] \xrightarrow{w_{Z}\left[\ell^{\infty}\right]} A^{i}\left(X_{\bar{K}}\right)\left[\ell^{\infty}\right] \xrightarrow{\phi\left[\ell^{\infty}\right]} A(\bar{K})\left[\ell^{\infty}\right]
$$

- $\phi\left[\ell^{\infty}\right] \mathrm{Gal}(K)$-equivariant by hypothesis.
- $w_{Z}\left[\ell^{\infty}\right]$ is $\operatorname{Gal}(K)$-equivariant since $Z / K, 0 \in B(K)$.

So $\psi: B_{\bar{K}} \rightarrow A_{\bar{K}}$ descends to K.

Consequence

Corollary
 If $K \subset \mathbb{C}$, then $\mathrm{A}^{n+1}\left(X_{\mathbb{C}}\right) \rightarrow J(\mathbb{C})$ is $\operatorname{Aut}(\mathbb{C} / K)$-equivariant.

Transport de structure

Construction of J is functorial in $K \hookrightarrow \mathbb{C}$:

```
Lemma
If \(\sigma \in \operatorname{Aut}(\mathbb{C} / \mathbb{Q})\), then
```

$$
J_{a}^{2 n+1}\left(\left(X_{\mathbb{C}}\right)^{\sigma}\right) \cong J_{a}^{2 n+1}\left(X_{\mathbb{C}}\right)^{\sigma}
$$

Idea

If $\Gamma \in \mathrm{CH}(J \times X)$ witnesses J as the algebraic intermediate Jacobian of X, then Γ^{σ} does the same for J^{σ} and X^{σ}.

(1) Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem
(2) Proof
- Capture
- Descent
(3) Beyond torsion
- Regularity
- Descent of regular maps
(4) Applications
- Complete intersections
- Jumping loci
- Categorification

Classification

$X_{n}\left(a_{1}, \cdots, a_{d}\right) \subset \mathbb{P}^{n+d}$ a smooth complete intersection of dimension n, multidegree \underline{a}.

Rapoport's Classification

A smooth complete intersection has Hodge level one if and only if it belongs to the following list:
$X_{n}(2,2)$ intersection of two quadrics in \mathbb{P}^{n+2};
$X_{n}(2,2,2)$ intersection of three quadrics;
$X_{3}(3)$ cubic threefold;
$X_{3}(2,3)$ a threefold, realized as the intersection of a quadric and cubic;
X_{5} (3) cubic fivefold;
$X_{3}(4)$ quartic threefold.

Period maps for Hodge level one

Distinguished models give new proof of:

Theorem (Deligne)

Let \mathcal{V} be a moduli space of complete intersection varieties of Hodge level one. The period map

$$
\mathcal{V}(\mathbb{C}) \longrightarrow \mathcal{A}_{g(\mathcal{V})}(\mathbb{C})
$$

is induced by a morphism

$$
\mathcal{V}_{\mathbb{Q}} \longrightarrow \mathcal{A}_{g(\mathcal{V}), \mathbb{Q}}
$$

over \mathbb{Q}.

From points to period maps

Proof.

- If $X \in \mathcal{V}(\mathbb{C})$,

$$
\mathrm{CH}_{0}(\mathrm{X})_{\mathbb{Q}}, \cdots, \mathrm{CH}_{n-1}(\mathrm{X})_{\mathbb{Q}}
$$

spanned by linear sections (Otwinoska).

- Decomposition of the diagonal; $\mathrm{A}^{n}(X) \rightarrow J^{2 n+1}(X)$ surjective, so $J^{2 n+1}(X)=J_{a}^{2 n+1}(X)$ (Bloch-Srinivas).
- Since $J^{2 n+1}\left(X^{\sigma}\right)=J^{2 n+1}(X)^{\sigma}$,

$$
\left\{\left(X, J^{2 n+1}(X)\right)\right\} \subset\left(\mathcal{V} \times \mathcal{A}_{g(\mathcal{V})}\right)(\mathbb{C})
$$

is stable under $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$, and the period map descends.

Specialization

- R / \mathbb{C} a discrete valuation ring
- $X \rightarrow S=\operatorname{Spec} R$ a smooth projective scheme.
- $J\left(X_{\eta}\right)=J_{a}^{2 n+1}\left(X_{\eta}\right)$, etc.

Then:

- $J\left(X_{\eta}\right)$ extends to an abelian scheme $\underset{J}{ }\left(X_{\eta}\right) / S$;
- There is a specialization map

$$
\underline{J}\left(X_{\eta}\right)_{0} \longleftrightarrow J\left(X_{0}\right)
$$

Jumps in J

In general, $\underline{J}\left(X_{\eta}\right)_{0} \rightarrow J\left(X_{0}\right)$ is not surjective.

Example

- E a CM field with $[E: \mathbb{Q}]=6,\left[\widetilde{E}: \widetilde{E^{(+)}}\right]=8$.
- $X \rightarrow S$ an abelian threefold with:
- $\operatorname{End}\left(X_{\bar{\eta}}\right) \cong \mathbb{Z}$;
- $\operatorname{End}\left(X_{0}\right) \cong \mathcal{O}_{E}$.

Then (Tankeev)

- $\operatorname{dim} J_{a}^{3}\left(X_{\bar{\eta}}\right)=\frac{1}{2} \operatorname{dim} \mathrm{~N}^{1} H^{3}\left(X_{\bar{\eta}}, \mathbb{Q}_{\ell}\right)=3$;
- $\operatorname{dim} J_{a}^{3}\left(X_{0}\right)=\frac{1}{2} \operatorname{dim} \mathrm{~N}^{1} H^{3}\left(X_{0}, \mathbb{Q}_{\ell}\right)=9$.

In general, $s \mapsto \operatorname{dim} J_{a}^{2 n+1}\left(X_{s}\right)$ is upper semicontinuous.

Jumping locus

- S / \mathbb{Q} reduced and irreducible, with generic point η.
- $X \rightarrow S$ a smooth projective scheme.

Set-theoretically define the jumping locus
$S^{\text {jump }}=S^{\text {jump }}(X, n)=\left\{s \in S(\mathbb{C}): \operatorname{dim} J_{a}^{2 n+1}\left(X_{s}\right)>\operatorname{dim} J_{a}^{2 n+1}\left(X_{\eta_{\mathbb{C}}}\right)\right\}$.
Modeled on Hodge locus (Cattani-Deligne-Kaplan).

$S^{\text {jump }}$ is algebraic

Proposition (provisional)

$S^{\text {jump }}$ descends to \mathbb{Q} as a countable union of algebraic subvarieties.

$S^{\text {jump }}$ is algebraic

Proposition (provisional)

$S^{\text {jump }}$ descends to \mathbb{Q} as a countable union of algebraic subvarieties.

Idea

- $S^{\text {jump }}$ is (complex-analytically) locally a countable union of closed analytic subsets.
- Since $J\left(X^{\sigma}\right)=J(X)^{\sigma}, S^{j u m p}$ is stable under $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$.

Derived equivalence

- X / K smooth projective variety over a field.
- $\mathrm{D}(X)$ bounded derived category of coherent sheaves on X.
$\mathrm{D}(X)$ encodes lots of information about X.

Sample Theorem [Orlov]

If X and Y are smooth projective varieties over K with ample (anti-)canonical bundle, and if $\mathrm{D}(X) \cong \mathrm{D}(Y)$, then $X \cong Y$.

Categorical invariants

If $\mathrm{D}(X) \cong \mathrm{D}(Y)$, then, e.g.,

- $\operatorname{dim} X=\operatorname{dim} Y$;
- $\kappa(X)=\kappa(Y)$ (Orlov)

$$
\begin{aligned}
\oplus H^{2 i}(X)(i) & \cong \oplus H^{2 i}(Y)(i) \\
\oplus H^{2 i+1}(X)(i) & \cong \oplus H^{2 i+1}(Y)(i)
\end{aligned}
$$

where H^{\bullet} is some Weil cohomology with weights (Mukai).

- $\operatorname{Aut}^{0}(X) \times \operatorname{Pic}^{0}(X) \cong \operatorname{Aut}^{0}(Y) \times \operatorname{Pic}^{0}(Y)$ (Rouquier).

Jacobians

Theorem

Let X and Y be smooth, projective varieties over a field K. If $\mathrm{D}(X) \cong \mathrm{D}(Y)$, then $\left(\operatorname{Pic}_{X}^{0}\right)_{\text {red }}$ and $\left(\operatorname{Pic}_{Y}^{0}\right)_{\text {red }}$ are isogenous over K.

- For $K=\mathbb{C}$, Popa-Schnell.
- For K arbitrary, Honigs-A.-C.-M.-V.

Jacobians

Theorem

Let X and Y be smooth, projective varieties over a field K. If $\mathrm{D}(X) \cong \mathrm{D}(Y)$, then $\left(\operatorname{Pic}_{X}^{0}\right)_{\text {red }}$ and $\left(\operatorname{Pic}_{Y}^{0}\right)_{\text {red }}$ are isogenous over K.

- For $K=\mathbb{C}$, Popa-Schnell.
- For K arbitrary, Honigs-A.-C.-M.-V.

Corollary (Honigs)

If X and Y are derived equivalent threefolds over \mathbb{F}_{q}, then

$$
Z_{X}(T)=Z_{Y}(T)
$$

Total intermediate Jacobians

Theorem

Let X and Y be smooth projective varieties over a field $K \subset \mathbb{C}$ with $\mathrm{D}(X) \cong \mathrm{D}(Y)$. Then the total algebraic intermediate Jacobians

$$
\underline{I}_{a}(X)=\oplus \underline{I}_{a}^{2 n+1}\left(X_{\mathbb{C}}\right) \text { and } \underline{J}_{a}(Y)=\oplus \underline{I}_{a}^{2 n+1}\left(Y_{\mathbb{C}}\right)
$$

are isogenous over K.

Threefolds

Corollary
If $\operatorname{dim} X=\operatorname{dim} Y=3$ and $\mathrm{D}(X) \cong \mathrm{D}(Y)$, then

$$
J_{a}^{3}\left(X_{\mathbb{C}}\right) \sim J_{a}^{3}\left(Y_{\mathbb{C}}\right)
$$

Idea

Use:

- Popa-Schnell: $J^{1}(X) \sim J^{1}(Y)$;
- Auto-duality: $J^{5}(X) \sim J^{5}(Y)$;
- Poincaré reducibility: "cancel" from $J_{a}(X)$ and $J_{a}(Y)$.

Threefolds

Corollary
If $\operatorname{dim} X=\operatorname{dim} Y=3$ and $\mathrm{D}(X) \cong \mathrm{D}(Y)$, then

$$
J_{a}^{3}\left(X_{\mathbb{C}}\right) \sim J_{a}^{3}\left(Y_{\mathbb{C}}\right)
$$

Variant

If K an arbitrary perfect field, replace $J_{a}^{3}(X)$ with a distinguished model of $\mathrm{Ab}^{2}\left(X_{\bar{K}}\right)$, Murre's algebraic representative for $\mathrm{A}^{2}\left(X_{\bar{K}}\right)$.

Thanks!

