Abelian varieties & Galois actions

July 25 - 27, 2017

Collegium Minus Adam Mickiewicz University Poznań, Poland

ABSTRACTS

Speaker : Sebastian Petersen

Title : A variational open image theorem in positive characteristic

Abstract: Let k be a finitely generated infinite field of characteristic p > 0, S a smooth geometrically connected k-variety of positive dimension and $f : \mathscr{X} \to S$ a smooth proper morphism of schemes. Let K = k(S) be the function field of S and let X/k(S) be the generic fibre of \mathscr{X} . Fix $j \in \mathbb{N}$. For every prime number $\ell \neq p$ we define $V_{\ell} := H^j(X_{\overline{K}}, \mathbb{Q}_{\ell})$ and let

$$\rho_{\ell^{\infty}}: \pi_1(S) \to \underline{\operatorname{GL}}_{V_\ell}(\mathbb{Q}_\ell)$$

be the representation of $\pi_1(S)$ on the \mathbb{Q}_ℓ -vector space V_ℓ . We write

$$\rho: \pi_1(S) \to \prod_{\ell \neq p} \underline{\operatorname{GL}}_{V_\ell}(\mathbb{Q}_\ell)$$

for the induced adelic representation $\prod_{\ell \neq p} \rho_{\ell^{\infty}}$. For every point $s \in S$ with residue field k(s) we denote by s_* : $\operatorname{Gal}(k(s)) \to \pi_1(S)$ the homomorphism induced by s (well-defined up to conjugation), and for any group homomorphism $\tau : \pi_1(S) \to H$, we define $\tau_s := \tau \circ s_*$. Finally, for every prime number $\ell \neq p$ let $\underline{G}(\rho_{\ell^{\infty},s})$ (resp. $\underline{G}(\rho_{\ell^{\infty}})$) be the connected component of the Zariski closure of $\rho_{\ell^{\infty},s}(\operatorname{Gal}(k(s)))$ (resp. of $\rho_{\ell^{\infty}}(\pi_1(S))$) in $\underline{\operatorname{GL}}_{V_{\ell}}/\mathbb{Q}_{\ell}$, and define $S^{\operatorname{gen}}(\rho_{\ell^{\infty}}) = \{s \in S \text{ a closed point } : \underline{G}(\rho_{\ell^{\infty},s}) = \underline{G}(\rho_{\ell^{\infty}}) \}.$

Theorem.

- (a) The sets $S^{\text{gen}}(\rho_{\ell^{\infty}})$ are independent of ℓ . Let $S^{\text{gen}}(\mathscr{X}/S) := S^{\text{gen}}(\rho_{\ell^{\infty}})$ for any $\ell \neq p$.
- (b) The set $S^{\text{gen}}(\mathscr{X}/S)$ is Zariski dense in S, and in particular it is infinite.
- (c) The group $\rho_s(\operatorname{Gal}(k(s)))$ is open in $\rho(\pi_1(S))$ for every $s \in S^{\operatorname{gen}}(\mathscr{X}/S)$.

This Theorem parallels the variational open image theorem of Cadoret for abelian schemes over varieties over finitely generated fields of characteristic zero published in 2016. In positive characteristic there is a result similar to our main theorem in a very recent preprint of Cadoret. (This is a joint work with Gebhard Böckle and Wojciech Gajda.)